Symmetric Matrices and Quadratic Forms

Positive Definite Matrix

- If S is positive definite $S = A^T A$ (A must have independent columns): $A^T A$ is positive definite iff the columns of A are linearly independent.
 - Proof?

A مستقل خطی بودن ستون های A و مثبت معین بودن گرام آن دوطرفه است. اگر ستون های A مستقل خطی باشند:

$$\forall x \neq \circ : Q(x) = x^T A^T A x$$

به دلیل استقلال خطی ستون ها داریم که

$$x \neq \circ \implies Ax \neq \circ$$

درنتيجه

$$x^T A^T A x = (Ax)^T (Ax) = ||Ax||^{\mathsf{T}} > 0$$

پس A^TA مثبت معین است.

طرف دیگر:

$$\forall x \neq \circ : \|Ax\|^{\mathsf{T}} = (Ax)^T (Ax) = x^T A^T A x = Q(x) > \circ \implies \|Ax\|^{\mathsf{T}} > \circ \implies Ax \neq \circ$$

پس نال اسپیس آن فقط صفر است که یعنی ستون های آن مستقل خطی اند.

Eigenvalues & Positive Definite Matrices

- POSITIVE DEFINITE ⇒ POSITIVE EIGENVALUES
 - Proof?
- POSITIVE EIGENVALUES \Rightarrow POSITIVE DEFINITE
 - Proof?

نماد T درصورت مختلط بودن فضا در روابط زیر به * تغییر مییابد. ابتدا فرض میکنم pd است. مقدار ویژه λ را در نظر میگیریم پس $\delta v = \lambda v$ و

$$pd \implies x^T S x > \circ \implies \circ < v^T S v = v^T \lambda v = \lambda v^T v = \lambda ||v||^{\mathsf{Y}}$$

از انجا که بردار ویژه ها ناصفر اند و نرم به توان دو عددی مثبت است پس به دلیل مثبت بودن کل عبارت داریم که λ بزرگتر از صفر است.

طرف دیگر: میدانیم S متقارن است پس طبق spectral decomposition داریم که

$$S = UDU^T$$

که U ماتریس unitary و D قطری است.

$$x^T S x = x^T (UDU^T) x = (x^T U) D(U^T x) = y^T D y = \sum_{i=1}^n D_{ii} y_i^{\mathsf{Y}} = \sum_{i=1}^n \lambda_i y_i^{\mathsf{Y}} > \circ$$

که نابرابر آخر از مثبت بودن توان دوی y و مثبت بودن مقدار ویژه ها طبق فرض پدید آمده است. نکته: تساوی قبل تر از اینکه قطر D مقدار ویژه های S اند نتیجه می شود. نامساوی به دست آمده همان شرط مثبت معین بودن S می باشد.

Left determinants & Positive Definite Matrix

All upper left determinants must be > 0

$$A = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}$$

- POSITIVE DEFINITE ⇒ POSITIVE DETERMINANT
 - Proof?

داريم که

$$x^T S x > \circ$$

نعریف می کنیم

$$x^T = [x_k^T \quad \circ^T]$$

در نتيجه

$$\begin{bmatrix} x_k^T & \circ \end{bmatrix} \begin{bmatrix} S_k & B \\ B^T & C \end{bmatrix} \begin{bmatrix} x_k \\ \circ \end{bmatrix} = \begin{bmatrix} x_k^T S_k & x_K^T B \end{bmatrix} \begin{bmatrix} x_k \\ \circ \end{bmatrix} = x_k^T S_k x_k > \circ$$

پس S_k نیز pd است. به موجب آن همه مقادیر ویژه آن مثبت اند و درنتیجه دترمینان که ضرب مقدار ویژه ها است نیز مثبت است.

با طور مشابه با استدلال بر روی S_k و همینطور زیرماتریس های کوچک تر ثابت می شود که دترمینان تمام S_i ها مثبت است.

Sylvester's Criterion

Suppose $A \in \mathcal{M}_n$ is self-adjoint. Then A is positive definite if and only if, for all $1 \le k \le n$, the determinant of the top-left $k \times k$ block of A is strictly positive.

طرف دیگر: اگر دترمینان ها مثبت باشند ماتریس pd است.

از استقرا استفاده میکنیم. پایه مارتیس 1×1 است که یک عدد است و مثبت بودن دترمینان آن معادل مثبت بودن خود عدد و درنتیجه pd بودن است.

فرض می کنیم حکم برای $A_{(n-1)\times(n-1)}$ برقرار است و ثابت میکنیم اگر دترمینان های $A_{n\times n}$ مثبت باشند، ماتریسی pd است.

بردار ویژه های A دو به دو بر هم عمومدند. قرار می دهیم:

$$x = \sum_{i} \lambda_i v_i$$

که مقدار و بردار ویژه ها در جمع قرار دارند.

$$(\sum \lambda_i v_i)^T A(\sum \lambda_i v_i) = \sum \lambda_i^{\mathsf{T}} v_i^T A v_i = \sum \lambda_i^{\mathsf{T}} v_i^T \lambda v_i = \sum \lambda_i^{\mathsf{T}} v_i^T v_i = \sum \lambda_i^{\mathsf{T}} \|v_i\|^{\mathsf{T}} > \circ$$

جملات $v_i v_j$ در جمع به دلیل تعامد بردار ویژه ها حذف (صفر) شدند.

نامساوی آخر ناشی از این است که دترمینان در $A_{n\times n}$ و $A_{(n-1)\times(n-1)}$ بنابراین چون دترمینان ضرب مقدار ویژه ها است تفاوت این دو ضرب که λ_n است باید مثبت باشد. مشابه همین استدلال برای دوتایی های قبلی $A_{i\times i}$ ها نتیجه میدهد تمام مقدار ویژه ها تا اینجا مثبت اند پس توان سه آن ها نیز مثبت است. در نابرابری بالا پس هم توان دوی نرم مثبت است و هم توان سه مقدار ویژه ها پس جمع نیز عددی مثبت است.

Pivots & Positive Definite Matrix

■ POSITIVE PIVOTS ⇒ POSITIVE DEFINITE

Proof?

متقارن است پس طبق LDU داریم که A

A = LDU

که L و D و U به ترتیب پایین مثلثی و قطری و بالا مثلثی اند. طبق تقارن داریم که

$$LDU = (LDU)^T = U^T D^T L^T = U^T D L^T$$

که تساوی آخر ناشی از قطری بودن D است. همچنین طبق برقراری زیر

$$U^TDU = U^TDU \implies L^T = U \implies A = LDL^T = LD^{\frac{1}{7}}D^{\frac{1}{7}}L^T = R^TR$$

.که $R=D^{rac{1}{7}}L$ است

$$x^{T}Ax = x^{T}R^{T}Rx = (Rx)^{T}(Rx) = ||Rx||^{\Upsilon} > 0$$

که حکم است. البته برای نابرابری اکید آخر باید استقلال خطی ستون های R بررسی شود.

Properties

- Suppose $A, B \in \mathcal{M}_n$ are positive (semi)definite, $P \in \mathcal{M}_{n,m}$ is any matrix, and c > 0 is a real scalar. Then
 - a) A + B is positive (semi)definite,
 - b) cA is positive (semi)definite,
 - c) A^T is positive (semi)definite, and
 - d) P^*AP is positive semidefinite. Furthermore, if A is positive definite then P^*AP is positive definite if and only if rank(P) = m.

x = Py قرار می دهیم

$$x^T A x > \circ \implies (P y)^T A (P y) > \circ \implies y^T (P^T A P) y > \circ$$

درنتیجه کوادرتیک فرم به دست آمده با ماتریس P^TAP به ما psd بودن آن را نتیجه می دهد. برای ورنتیجه کوادرتیک فرم به دست آمده با ماتریس P به معادل استقلال خطی ستون های P میباشد.